How do you solve #(x-1)(x-2)(x-3)(x-4) = 24#?
1 Answer
Apr 19, 2016
Explanation:
Let
Then:
#f(0) = (-1)(-2)(-3)(-4) = 4! = 24#
#f(5) = (5-1)(5-2)(5-3)(5-4) = 4*3*2*1 = 4! = 24#
So both
#f(x)-24#
#= (x-1)(x-2)(x-3)(x-4)-24#
#=x^4-10x^3+35x^2-50x#
#=x(x-5)(x^2-5x+10)#
The remaining quadratic factor is in the form
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(5+-sqrt(5^2-(4*1*10)))/2#
#=(5+-sqrt(-15))/2#
#=5/2+-sqrt(15)/2i#