What is the antiderivative of # x ln x #?

1 Answer
Apr 19, 2016

#intxlnxdx=(x^2lnx)/2-x^2/4+C#

Explanation:

Using integration by parts:

#intudv=uv-intvdu#

In the case of

#intxlnxdx#

We let

#u=lnx" "=>" "(du)/dx=1/x" "=>" "du=1/xdx#

#dv=xdx" "=>" "intdv=intxdx" "=>" "v=x^2/2#

Thus, plugging these in, we see that

#intxlnxdx=(x^2/2)lnx-intx^2/2(1/x)dx#

#=(x^2lnx)/2-intx/2dx#

#=(x^2lnx)/2-x^2/4+C#