How do you integrate #sechx (tanhx-sechx) dx#?
1 Answer
Apr 21, 2016
Explanation:
If we distribute the
#=int(sechxtanhx-sech^2x)dx#
Splitting this into two integrals:
#=intsechxtanhxdx-intsech^2xdx#
Recall that
Thus, the integral gives us:
#=sechx-tanhx+C#