How do you solve #{3x-2)^(3/5) = 8 #?
1 Answer
Apr 26, 2016
Explanation:
Our first step should be to undo the
#((3x-2)^(3/5))^(5/3)=8^(5/3)#
On the left hand side, use the following rule:
#(a^b)^c=a^(bc)#
Applying this rule to the left side, we multiply
#(3x-2)^(3/5xx5/3)=8^(5/3)#
#(3x-2)^1=8^(5/3)#
#3x-2=8^(5/3)#
Now, we should simplify
#3x-2=(2^3)^(5/3)#
Use the exponent rule again.
#3x-2=2^((3xx5/3))#
#3x-2=2^5#
#3x-2=32#
#3x=34#
#x=34/3#