What's the integral of #int (tanx)^2+(tanx)^4 dx#?
1 Answer
Apr 27, 2016
Explanation:
Factor a
#=inttan^2x(1+tan^2x)dx#
We know
#=inttan^2xsec^2xdx#
We can now use substitution:
#u=tanx" "=>" "du=sec^2xdx#
This gives us:
#=intu^2du=u^3/3+C=tan^3x/3+C#