How do you solve #log_4 (m + 2) - log_4(m - 5) = log_4 8#?
1 Answer
Apr 28, 2016
Explanation:
Given,
#log_4(m+2)-log_4(m-5)=log_4(8)#
We can simplify the left side of the equation using the logarithmic property,
#log_4((m+2)/(m-5))=log_4(8)#
Since the equation now follows a "
#(m+2)/(m-5)=8#
Solve for
#m+2=8(m-5)#
#m+2=8m-40#
#7m=42#
#color(green)(|bar(ul(color(white)(a/a)m=6color(white)(a/a)|)))#