How do you simplify #x^3+3# ?
1 Answer
Apr 30, 2016
Explanation:
This is already in simplest form unless you count factorisation.
We can treat this expression as a sum of cubes and use the sum of cubes identity:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
with
#x^3+3#
#=x^3+(root(3)(3))^3#
#=(x+root(3)(3))(x^2-x(root(3)(3))+(root(3)(3))^2)#
#=(x+root(3)(3))(x^2-root(3)(3)x+root(3)(9))#