What are the components of the vector between the origin and the polar coordinate #(1, (11pi)/6)#?
1 Answer
Apr 30, 2016
Explanation:
Convert Polar to Cartesian coordinates using the formulae that link them.
#color(red)(|bar(ul(color(white)(a/a)color(black)( x = rcostheta , y = rsintheta)color(white)(a/a)|)))# now
#(11pi)/6" is an angle in the 4th quadrant "# where the cos ratio has a positive value and the sin ratio a negative value.
The 'related' acute angle is
#(2pi-(11pi)/6)=pi/6# so
#cos((11pi)/6)=cos(pi/6)#
and#sin((11pi)/6)=-sin(pi/6)# Using the
#color(blue)" Exact value triangle for this angle "#
here r = 1 and#theta=pi/6#
#rArr x=rcostheta=1xxcos(pi/6)=sqrt3/2# and
#y=-rsintheta=1xx-sin(pi/6)=-1/2#