How do you find the integral of #1/cos x#?
1 Answer
Apr 30, 2016
Explanation:
Note that
#int1/cosxdx=intsecxdx#
This is an important trigonometric identity:
#intsecxdx=lnabs(secx+tanx)+C#
If you want to know how to find
#intsecxdx=int(secx(secx+tanx))/(secx+tanx)dx=int(secxtanx+sec^2x)/(secx+tanx)dx#
Now, use substitution:
#u=secx+tanx" "=>" "du=(secxtanx+sec^2x)dx#
Note that these are the fraction's numerator and denominator.
#int(secxtanx+sec^2x)/(secx+tanx)dx=int(du)/u=lnabsu+C#
Since
#intsecxdx=lnabs(secx+tanx)+C#