If #(r,theta)# is in polar form and #(x,y)# in Cartesian form the relation between them is as follows:
#x=rcostheta#, #y=rsintheta#, #r^2=x^2+y^2# and #tantheta=y/x#
Hence, #-y=3y^2-x^2-2x# can be written as
#-rsintheta=3r^2sin^2theta-r^2cos^2theta-2rcostheta# or
#-sintheta=3rsin^2theta-rcos^2theta-2costheta# or
#r(3sin^2theta-cos^2theta)=2costheta-sintheta# or
#r=(2costheta-sintheta)/(3sin^2theta-cos^2theta)#