Solve the trigonometric equation
#1+sin^2 x=3 sin x cos x#
Let #cos x=sqrt(1-sin^2 x)" "#from Pythagorean Relation
#1+sin^2 x=3 sin x sqrt(1-sin^2 x)#
Square both sides of the equation
#1+sin^2 x=3 sin x sqrt(1-sin^2 x)#
#(1+sin^2 x)^2=(3 sin x sqrt(1-sin^2 x))^2#
#1+2*sin^2 x+sin^4 x=9*sin^2 x(1-sin^2 x)#
#1+2*sin^2 x+sin^4 x=9*sin^2 x-9*sin^4 x#
#10*sin^4 x-7*sin^2 x+1=0#
Quadratic Equation
Let #w^2=sin^4 x# and #w=sin^2 x# then we have
#10*sin^4 x-7*sin^2 x+1=0#
#10*w^2-7*w+1=0#
then solve for w
#w=(-b+-sqrt(b^2-4ac))/(2a)#
#w=(-(-7)+-sqrt((-7)^2-4(10)(1)))/(2(10))#
#w=(7+-sqrt(49-40))/(2(10))#
#w_1=(7+3)/20=1/2#
#w_2=(7-3)/20=1/5#
#sin^2 x=+-sqrt(1/2)# and
#x=45^@# which is the root of the equation
#x=-45^@# not a root
#x=+-26.565^@# not a root
God bless...I hope the explanation is useful.