How do you differentiate #sin(x) / (1 + sin^2(x))#?

1 Answer
May 5, 2016

#(cos^3x)/(1+sin^2x)^2#

Explanation:

Differentiate using the# color(blue)" quotient rule "#

If f(x)#=(g(x))/(h(x))"then" f'(x)=(h(x).g'(x)-g(x).h'(x))/(h(x)^2#
#"--------------------------------------------------------------------"#

g(x)#=sinxrArrg'(x)=cosx#

h(x)#=1+sin^2xrArrh'(x)=2sinxcosx#
#"-------------------------------------------------------------------"#
now substitute these values into f'(x)

#f'(x)=((1+sin^2x)cosx-sinx(2sinxcosx))/(1+sin^2x)^2#

#=(cosx+cosxsin^2x-2cosxsin^2x)/(1+sin^2x)^2#

#=(cosx-cosxsin^2x)/(1+sin^2x)^2=(cosx(1-sin^2x))/(1+sin^2x)^2#

and using trig identity #color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|))#
#rArr1-sin^2x=cos^2x#

#rArrf'(x)=(cos^3x)/(1+sin^2x)^2#