How do you factor #14n^2+23n-15#?
1 Answer
Explanation:
Given:
Use an AC method.
Find a pair of factors of
The pair
Use this pair to split the middle term and factor by grouping:
#14n^2+23n-15#
#=14n^2+30n-7n-15#
#=(14n^2+30n)-(7n+15)#
#=2n(7n+15)-1(7n+15)#
#=(2n-1)(7n+15)#
Alternatively, multiply by
#a^2-b^2=(a-b)(a+b)#
with
#56(14n^2+23n-15)#
#=784n^2+1288n-840#
#=(28n)^2+2(28n)(23)-840#
#=(28n+23)^2-23^2-840#
#=(28n+23)^2-529-840#
#=(28n+23)^2-1369#
#=(28n+23)^2-37^2#
#=((28n+23)-37)((28n+23)+37)#
#=(28n-14)(28n+60)#
#=(14(2n-1))(4(7n+15))#
#=56(2n-1)(7n+15)#
So:
#14n^2+23n-15 = (2n-1)(7n+15)#