How do you factor #5c^2-24cd-5d^2#?
1 Answer
May 9, 2016
Explanation:
Here's one way...
Multiply through by
#a^2-b^2 = (a-b)(a+b)#
with
#5(5c^2-24cd-5d^2)#
#=25c^2-120cd-25d^2#
#=(5c-12d)^2-(12d)^2-25d^2#
#=(5c-12d)^2-(144+25)d^2#
#=(5c-12d)^2-169d^2#
#=(5c-12d)^2-(13d)^2#
#=((5c-12d)-13d)((5c-12d)+13d)#
#=(5c-25d)(5c+d)#
#=5(c-5d)(5c+d)#
So:
#5c^2-24cd-5d^2 = (c-5d)(5c+d)#