How do you simplify #sqrt(108x^5y^8)/sqrt(6xy^5)#?

2 Answers
May 11, 2016

#3x^2sqrt(2y^3)#

Explanation:

#sqrt(108x^5y^8)/sqrt(6xy^5)=sqrt((108x^5y^8)/(6xy^5))#
#=sqrt((108/6)(x^5/x)(y^8/y^5)#
#=sqrt((18)(x^(5-1))(y^(8-5))#
#=sqrt((18)(x^4)(y^3)#
#=3x^2sqrt(2y^3)#

May 11, 2016

# 3x^2ysqrt(2y)#

Explanation:

Each square root can be calculated separately, or because it is a division, it can be combined into a single square root.

#sqrt(108x^5y^8)/sqrt(6xy^5)# = #sqrt(18x^4y^3) = sqrt(9 xx 2x^4y^2 y )#

=# 3x^2ysqrt(2y)#