How do you simplify #((-22y^4)/(21xz^2))##((10x^9) / (-4y^7z^3))##((-7yz^5)/(11x^3))#?

2 Answers
May 11, 2016

=#(-5x^5)/(3y^2)#

Explanation:

This is plain multiplication of algebraic fractions:

  1. Determine the overall sign: even number of negatives #rArr# pos

  2. Cancel the numbers wherever possible.

  3. Collect all the variables together in numerator and denominator.
  4. Simplify

#(-22y^4 xx 10x^9 xx -7yz^5)/(21xz^2 xx -4y^7z^3 xx 11x^3)#

#= (-cancel22^2y^4 xx cancel 10^5x^9 xx cancel7yz^5)/(cancel21^3xz^2 xx cancel4^2y^7z^3 xx cancel11x^3)#

=#(-cancel2y^4 xx 5x^9 xx yz^5)/(3xz^2 xx cancel2y^7z^5 xx x^3)# = #(-5x^9y^5z^5)/(3x^4y^7z^5)#

=#(-5x^5)/(3y^2)#

May 12, 2016

Just a very slightly different approach (basically the same thing)

#" "-(5x^5)/(3y^5)#

Explanation:

#("Product of numerator"->"positive")/("product of denominator"->"negative") ->"negative"#

Giving:#" "(-1)xx (22xx10xx7xxy^4x^9yz^5 )/(21xx4xx11xx xz^2y^7z^3x^3)#

#" "(-1)xx(1540)/942xx(x^9y^5z^5 )/( x^4y^7z^5)#

#" "(-1)xx5/3xxx^5/y^2#

#" "-(5x^5)/(3y^5)#