How do you solve #(tanx-1)(2sinx+1)=0#?

1 Answer
May 15, 2016

degrees: #x=45^@,225^@,210^@,330^@#
radians: #x=pi/4,5/4pi,7/6pi,11/6pi#

Explanation:

Given,

#(tanx-1)(2sinx+1)=0#

In order for the equation to equal to #0#, either one of the factors must equal to #0#. Thus, set each factor to #0# and solve for #x#. Don't forget about the C.A.S.T. rule!

#tanx-1=0color(white)(XXXXXXX)2sinx+1=0#

#tanx=1color(white)(XXXXXXXXX)sinx=-1/2#

#x=color(green)(ul(color(black)(45^@)))#or #color(green)(ul(color(black)(225^@)))color(white)(XXXXXX)x=color(green)(ul(color(black)(210^@)))#or #color(green)(ul(color(black)(330^@)))#

#color(white)(XXx)color(green)(ul(color(black)(pi/4)))# or #color(green)(ul(color(black)(5/4pi)))color(white)(XXXXXXXXXx)color(green)(ul(color(black)(7/6pi)))# or #color(green)(ul(color(black)(11/6pi)))#