What is the instantaneous rate of change of #f(x)=sqrt(x^2+4x+2) # at #x=0 #?
1 Answer
May 17, 2016
Explanation:
The instantaneous rate of change is the value of f'(0).
#f(x)=sqrt(x^2+4x+2)=(x^2+4x+2)^(1/2)# differentiate using the
#color(blue)" chain rule"#
#d/dx[f(g(x))]=f'(g(x)).g'(x)"......(A)"#
#"-------------------------------------------------------"#
#f(g(x))=(x^2+4x+2)^(1/2)#
#rArrf'(g(x))=1/2(x^2+4x+2)^(-1/2)# and
#g(x)=x^2+4x+2rArrg'(x)=2x+4#
#"-----------------------------------------------------------"#
Substitute these values into (A)
#rArrf'(x)=1/2(x^2+4x+2)^(-1/2) .(2x+4)#
#=1/2xx1/(x^2+4x+2)^(1/2)xx(2x+4)#
#rArrf'(0)=1/2xx1/sqrt2xx4=2/sqrt2=(2sqrt2)/2=sqrt2#