How do you solve #8x + 39 = 2x - 15#?

1 Answer
May 17, 2016

Showing first principle methods in high detail. These methods will never let you down!

#x=-9#

Explanation:

The objective is to have just one #x# and for it to be on one side of the = and everything else to be on the other side. In this form it is saying: the value of x is ....

#color(brown)("Using first principles from which the shortcuts are derived")#

With practice you will recognise the shortcuts and start to use them with confidence.

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(green)("Subtract "color(blue)(2x)" from both sides")#

#" "color(brown)(8x+39color(blue)(-2x)=2x-15color(blue)(-2x))#

#" "8x-2x+39=2x-2x-15#

'...............................................................................................

#color(green)("But "8x-2x=6x" and "2x-2x=0)#

#" "6x+39=0-15#
'.........................................................................
#color(green)("Subtract "color(blue)(39)" from both sides")#

#" "color(brown)(6x+39color(blue)(-39)=-15color(blue)(-39))#

'........................................................................

#color(green)("But "39-30=0" and "-15-39 =-54)#

#" "6x+0=-54#

#" "6x=-54#
'...................................................................
#color(green)("Divide both sides by "color(blue)(6))#

#" "color(brown)(6xcolor(blue)(-:6)=(-54)color(blue)(-:6))#

#" "color(brown)(6/(color(blue)(6))xx x =(-54)/(color(blue)(6))#
'..................................................................
#color(green)("But "6/6=1)#

#" "x=-54/6#
'.............................................................
#color(green)("But "54/6=(54-:6)/(6-:6)= 9/1)#

#color(magenta)(" "x=-9)#