How do you find the derivative of #f(x) = x^2+3x+1# using the limit definition?

1 Answer
May 18, 2016

Do some substituting and algebra to get #f'(x)=2x+3#.

Explanation:

The definition of the derivative is:
#f'(x)=lim_(h->0)(f(x+h)-f(x))/h#

Our function #f(x)# equals #x^2+3x+1#. Applying it to the definition, we have:
#f'(x)=lim_(h->0)((x+h)^2+3(x+h)+1-(x^2+3x+1))/h#

And doing some algebra to finish off:
#f'(x)=lim_(h->0)(x^2+2xh+h^2+3x+3h+1-x^2-3x-1)/h#
#f'(x)=lim_(h->0)(2xh+h^2+3h)/h#
#f'(x)=lim_(h->0)(h(2x+h+3))/h#
#f'(x)=lim_(h->0)2x+h+3#
#f'(x)=2x+(0)+3#
#f'(x)=2x+3#