How many real solutions are there in the system of equations #x=y^2-5# and #x=2y#?

1 Answer
May 20, 2016

I found:
#x_(1)=2(1+sqrt(6))#
#x_(2)=2(1-sqrt(6))#
#y_(1)=1+sqrt(6)#
#y_(2)=1-sqrt(6)#

Explanation:

We can substitute the second into the first to get:
#2y=y^2-5#
#y^2-2y-5=0#
Using the Quadratic Formula we get:
#y_(1,2)=(2+-sqrt(4+20))/2=(2+-sqrt(24))/2=(2+-sqrt(6*4))/2=#
#=(2+-2sqrt(6))/2=1+-sqrt(6)#
these two #y# values will give you two #x# values using the second equation:
#x_(1,2)=2(1+-sqrt(6))#