Question #c1742

1 Answer
May 22, 2016

(2)

Explanation:

Distribute #e^(tan^-1(x))# in the integrand and split up the integrand through addition:

#=inte^(tan^-1(x))dx+int(xe^(tan^-1(x)))/(1+x^2)dx#

Attempt to solve the #inte^(tan^-1(x))dx# through integration by parts:

#intudv=uv-intvdu#

Let #u=e^(tan^-1(x))# and #dv=dx#. These imply that #du=e^(tan^-1(x))/(1+x^2)dx# and #v=x#.

Thus, #inte^(tan^-1(x))dx=xe^(tan^-1(x))-int(xe^(tan^-1(x)))/(1+x^2)dx#

When we plug this back into the original expression, we see that the #int(xe^(tan^-1(x)))/(1+x^2)dx# terms will cancel one another.

#=xe^(tan^-1(x))-int(xe^(tan^-1(x)))/(1+x^2)dx+int(xe^(tan^-1(x)))/(1+x^2)dx#

#=xe^(tan^-1(x))+C#