What is the limit as #x# approaches #0# of #(4x^2) / (1- cos2x)#?

1 Answer
May 24, 2016

#lim_{x->0} (4x^2)/(1-cos(2x))=2#

Explanation:

First we will use
#cos(a+b)=cos(a)cos(b)-sin(a)sin(b)#. If #a=b# then
#cos(2a)=1-2sin^2(a)#. Minding this result
#(4x^2)/(1-cos(2x)) = (4x^2)/(2sin^2(x)) = 2(x/(sin(x)))^2#
but #lim_{x->0}(x/(sin(x)))=1#
so
but #lim_{x->0} (4x^2)/(1-cos(2x))=2#