How do you differentiate #f(x)=sqrtcos(e^(4x))# using the chain rule.?
1 Answer
May 25, 2016
Explanation:
Let
#p = 4x# #q = e^p# #r = cos(q)# #s = sqrtr#
Therefore, to differentiate
Applying the chain rule,
#frac{"d"s}{"d"x} = frac{"d"s}{"d"r} frac{"d"r}{"d"q} frac{"d"q}{"d"p} frac{"d"p}{"d"x}#
#= 1/(2sqrtr) * (-sin(q)) * e^p * (4)#
#= frac{-2sin(e^(4x)) e^(4x)}{sqrt(cos(e^(4x)))}#