How do you find the derivative of # f(x)=e^(8x)+cos(x)sin(x)#?

1 Answer
May 28, 2016

#d /(d x) f(x)=8*e^(7x)*l n e+1-2sin^2 x#

Explanation:

#f(x)=e^(8x)+cos(x)sin(x)#

#d /(d x) f(x)=8*e^(7x)*l n e-sin x*sin x +cos x *cos x#

#d /(d x) f(x)=8*e^(7x)*l n e-sin^2 x+cos^2 x#

#cos^2 x=1-sin^2 x#

#d /(d x) f(x)=8*e^(7x)*l n e-sin^2 x+(1-sin^2 x)#

#d /(d x) f(x)=8*e^(7x)*l n e-sin^2 x+1-sin^2 x#

#d /(d x) f(x)=8*e^(7x)*l n e+1-2sin^2 x#