How do you simplify #root3(72)#? Prealgebra Exponents, Radicals and Scientific Notation Cube Root 1 Answer Shwetank Mauria May 31, 2016 #root(3)72=2root(3)9# Explanation: To simplify #root(3)72#, first factorize #72# As #72=2xx2xx2xx3xx3# #root(3)72=root(3)(ul(2xx2xx2)xx3xx3)# = #2root(3)(3xx3)# = #2root(3)9# Answer link Related questions How do you simplify #root(3)96#? How do you simplify #root(3)432#? How do you simplify #root(3)(-54)#? How do you simplify #root(3)(-1080)#? How do you simplify #root(3)(375)#? How do you simplify #root(3)(162)#? How do you find the cube roots #root3(27)#? How do you find the cube roots #root3(729)#? How do you find the cube roots #root3(64)#? How do you find the cube roots #root3(8000)#? See all questions in Cube Root Impact of this question 4005 views around the world You can reuse this answer Creative Commons License