How do you find the definite integral for: # x^2 + x + 4# for the intervals [0,2]?
1 Answer
Jun 1, 2016
Explanation:
To integrate this function use the
#color(blue)"power rule"#
#int(ax^n)dx=(ax^(n+1))/(n+1)# which can be applied to each term.
#rArrint_0^2(x^2+x+4)dx=[x^3/3+x^2/2+4x]_0^2# now subtract the value of the lower limit from the value of the upper limit.
#rArr(8/3+2+8)-(0)=38/3#