How do you simplify #(6x^2y)^2/((2x^4)(xy^2))#?

2 Answers
Jun 2, 2016

#((6x^2y)^2)/((2x^4)(xy)^2)= color(green)(18/x)#

Explanation:

#((6x^2y)^2)/((2x^4)(xy)^2)#

#color(white)("XXX")=(36x^4y^2)/(2x^4)(xy^2)#

#color(white)("XXX")=(cancel(36)^18x^4y^2)/((cancel(2)x^4)(xy^2))#

#color(white)("XXX")=(18cancel(x^4)y^2)/((cancel(x^4))(xy^2))#

#color(white)("XXX")=(18cancel(y^2))/(xcancel(y^2))#

#color(white)("XXX")=18/x#

Jun 2, 2016

#= 18/x#

Explanation:

Start by getting rid of the brackets ... I prefer to work with the numerator and denominator separately first.

#((6x^2y)^2)/[(2x^4)(xy^2)] = (36x^4y^2)/(2x^5y^2) #

#= 18/x#

Subtract the indices of like bases.