What is the integral of #int sin^2(x)cos^4(x) dx#?

1 Answer
Jun 5, 2016

#\frac{1}{16}\(x-\frac{1}{4}\sin \(4x\))+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x)+C#

Explanation:

#\int \sin^2\(x\)cos^4\(x\)dx#

Applying integral reduction,

#int sin^2(x) cos^n (x) dx# = #((sin^3 (x) cos^(n-1 )(x)) / (2+n))# #+((n-1) /(2+n))# #int sin^2 (x) cos^(n-2) (x)dx#

so,
#\int \sin ^2\(x\)\cos ^4\(x\)dx#
#=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\int \cos ^2\(x\)\sin ^2\(x\)dx#

#=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\int \cos ^2\(x\)\sin ^2\(x\)dx#

We know,
#\int \cos ^2\(x\)\sin ^2\(x\)dx=\frac{1}{8}\(x-\frac{1}{4}\sin \(4x\)\)#

Then,
#=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\frac{1}{8}\(x-\frac{1}{4}\sin \(4x\)\)#

Simplifying,
#=\frac{1}{16}\(x-\frac{1}{4}\sin \(4x\)\)+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x\)#

Adding constant to the solution,
#=\frac{1}{16}\(x-\frac{1}{4}\sin \(4x\)\)+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x\)+C#