\int \sin^2\(x\)cos^4\(x\)dx
Applying integral reduction,
int sin^2(x) cos^n (x) dx = ((sin^3 (x) cos^(n-1 )(x)) / (2+n)) +((n-1) /(2+n)) int sin^2 (x) cos^(n-2) (x)dx
so,
\int \sin ^2\(x\)\cos ^4\(x\)dx
=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\int \cos ^2\(x\)\sin ^2\(x\)dx
=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\int \cos ^2\(x\)\sin ^2\(x\)dx
We know,
\int \cos ^2\(x\)\sin ^2\(x\)dx=\frac{1}{8}\(x-\frac{1}{4}\sin \(4x\)\)
Then,
=\frac{\sin ^3\(x\)\cos ^3\(x\)}{6}+\frac{3}{6}\frac{1}{8}\(x-\frac{1}{4}\sin \(4x\)\)
Simplifying,
=\frac{1}{16}\(x-\frac{1}{4}\sin \(4x\)\)+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x\)
Adding constant to the solution,
=\frac{1}{16}\(x-\frac{1}{4}\sin \(4x\)\)+\frac{1}{6}\sin ^3\(x\)\cos ^3\(x\)+C