Question #0b19a

1 Answer

#int ((2x+13)dx)/(x^2+6x+13) =#
#ln (x^2+6x+13)+7/2*arctan ((x+3)/2)+C#

Explanation:

From the given #int ((2x+13)dx)/(x^2+6x+13) #

We can expand the integrand this way

#int ((2x+13)dx)/(x^2+6x+13)=int((2x+6+7)dx)/(x^2+6x+13) #

Then we split the fraction

#int ((2x+13)dx)/(x^2+6x+13)=int((2x+6)dx)/(x^2+6x+13) +int((7)dx)/(x^2+6x+13)#

We also know that #x^2+6x+13=(x+3)^2+4#
So that we can also write the integrals this way

#int ((2x+13)dx)/(x^2+6x+13)=int((2x+6)dx)/(x^2+6x+13) +7*int(dx)/((x+3)^2+4)#

Use now use the formulas

#int (du)/u=ln u# and #int (du)/(u^2+a^2)=1/a*arctan(u/a)#

it follows

#int ((2x+13)dx)/(x^2+6x+13)=#

#ln (x^2+6x+13) +7/2*arctan ((x+3)/2)+C#

God bless.....I hope the explanation is useful.