How do you simplify #(3x)/(x^2-x-12) - (x-1)/(x^2+6x+9) + (x-6)/(2x+6) #?

2 Answers
Jun 8, 2016

#(3x)/(x^2-x-12)-(x-1)/(x^2+6x+9)+(x-6)/(2x+6)=(x^3-3x^2+22x+64)/(2(x+3)(x+3)(x-4))#

Explanation:

For simplifying this, we first need to factorize denominators (as numerators are already in simplest terms).

#x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x+3)(x-4)#

#x^2+6x9=x^2+3x+3x+9=x(x+3)+3(x+3)=(x+3)(x+3)=(x+3)^2#

#2x+6=2(x+3)#

And LCD of three denominators is #2(x+3)(x+3)(x-4)#

Hence #(3x)/(x^2-x-12)-(x-1)/(x^2+6x+9)+(x-6)/(2x+6)#

= #(3x)/((x+3)(x-4))-(x-1)/(x+3)^2+(x-6)/(2(x+3))#

= #(3x xx2xx(x+3)-(x-1)xx2(x-4)+(x-6)(x+3)(x-4))/(2(x+3)(x+3)(x-4))#

= #((6x^2+18x)-2(x^2-5x+4)+(x-6)(x^2-x-12))/(2(x+3)(x+3)(x-4))#

= #((6x^2+18x)-2(x^2-5x+4)+(x^3-x^2-12x-6x^2+6x+72))/(2(x+3)(x+3)(x-4))#

= #(x^3-3x^2+22x+64)/(2(x+3)(x+3)(x-4))#

Jun 8, 2016

#(x^3-3x^2+22x+64)/(2(x-4)(x+3)^2)#

Explanation:

Look for common factors. So we need to investigate factorisation of the denominators.

#x^2-x-12 = (x+3)(x-4)#

#x^2+6x+9=(x+3)(x+3)#

#2x+6=2(x+3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Factor out #(x+3)# from the denominators giving:

#1/(x+3) [color(white)(.)(3x)/(x-4)-(x-1)/(x+3)+(x-6)/2color(white)(.)]color(red)("... Eqn (1)")#

Using a common denominator of #2(x-4)(x+3)#

'.................................................................................................................
Consider #(3x)/(x-4) -> (3x xx2xx(x+3))/(2(x-4)(x+3)) = (6x^2+18x)/(2(x-4)(x+3))#
,...................................................................................................................

Consider #-(x-1)/(x+3)-> ((x-1)xx2xx(x-4))/(2(x-4)(x+3)) = -(2x^2-10x+8)/(2(x-4)(x+3))# .
'.....................................................................................................................

Consider #(x-6)/2 -> ((x-6)(x-4)(x+3))/(2(x-4)(x+3))#

#=(x^3-7x^2-6x+72)/(2(x-4)(x+3)#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Putting it all together")#

#1/(x+3)[(x^3-3x^2+22x+64)/(2(x-4)(x+3))]#

#(x^3-3x^2+22x+64)/(2(x+3)(x-4)(x+3))#

Factoring this further

#((x+2)(x^2-5x+32))/(2(x-4)(x+3)^2) larr" don't think this helps much"#