How do you integrate #-1 / (x(ln x)^2)#?
1 Answer
Jun 11, 2016
Explanation:
We have:
#int-1/(x(lnx)^2)dx=-int(lnx)^-2/xdx#
We can use substitution here, since the derivative of
Let
We then have:
#-int(lnx)^-2/xdx=-int(lnx)^-2(1/x)dx=-intu^-2du#
Integrate this with the rule:
Thus,
#-intu^-2du=-(u^(-2+1)/(-2+1))+C=-(u^-1/(-1))+C=1/u+C#
Since
#=1/lnx+C#