What is the integral of # (cosx)^2#?

1 Answer
Jun 12, 2016

#1/4sin(2x)+1/2x+C#

Explanation:

We will use the cosine double-angle identity in order to rewrite #cos^2x#. (Note that #cos^2x=(cosx)^2#, they are different ways of writing the same thing.)

#cos(2x)=2cos^2x-1#

This can be solved for #cos^2x#:

#cos^2x=(cos(2x)+1)/2#

Thus,

#intcos^2xdx=int(cos(2x)+1)/2dx#

Split up the integral:

#=1/2intcos(2x)dx+1/2intdx#

The second integral is the "perfect integral:" #intdx=x+C#.

#=1/2intcos(2x)dx+1/2x#

The constant of integration will be added upon evaluating the remaining integral.

For the cosine integral, use substitution. Let #u=2x#, implying that #du=2dx#.

Multiply the integrand #2# and the exterior of the integral by #1/2#.

#=1/4int2cos(2x)dx+1/2x#

Substitute in #u# and #du#:

#=1/4intcos(u)du+1/2x#

Note that #intcos(u)du=sin(u)+C#.

#=1/4sin(u)+1/2x+C#

Since #u=2x#:

#=1/4sin(2x)+1/2x+C#

Note that this can be many different ways, since #sin(2x)=2sinxcosx#.