How do you integrate # [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx#?
1 Answer
Explanation:
We have:
#int [sin(3x)/(1+cos(3x)] + x^3e^(1-x^4)] dx#
Split this into two integrals:
#=intsin(3x)/(1+cos(3x))dx+intx^3e^(1-x^4)dx#
Examining just the first integral:
Let
We can use substitution: let
#A=1/3intsin(3x)/(1+cos(3x))(3)dx=1/3intsin(u)/(1+cos(u))du#
We can now use substitution again: let
#A=-1/3int(-sin(u))/(1+cos(u))du=-1/3int(dv)/v#
Note that
#A=-1/3ln(absv)+C=-1/3ln(abs(1+cos(u)))+C#
#A=-1/3ln(abs(1+cos(3x)))+C#
Now, onto the second integral:
Let
Again, we will use substitution: let
#B=-1/4int-4x^3e^(1-x^4)dx=-1/4inte^tdt#
Note that
#B=-1/4e^t+C=-1/4e^(1-x^4)+C#
Combining
#-1/3ln(abs(1+cos(3x)))-1/4e^(1-x^4)+C#