How do you differentiate # f(x)=(1-xe^(3x))^2# using the chain rule.? Calculus Basic Differentiation Rules Chain Rule 1 Answer Ratnaker Mehta Jun 12, 2016 #f'(x) =-2*e^(3x)(1-x*e^(3x))(3x+1).# Explanation: #f(x)=(1-x*e^(3x))^2# #:. f'(x)={(1-x*e^(3x))^2}'# #=2(1-x*e^(3x)}(1-x*e^(3x)}'# #=2(1-x*e^(3x)){0-(x*e^(3x))'}# #=-2(1-x*e^(3x))[x*{e^(3x)}'+e^(3x)(x)']# #=-2(1-x*e^(3x))[x*(e^(3x))(3x)'#+#(e^(3x))(1)]# #=-2(1-x*e^(3x))(3x*e^(3x)#+#e^(3x))# #=-2*e^(3x)(1-x*e^(3x))(3x+1).# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1387 views around the world You can reuse this answer Creative Commons License