How do you integrate #(x^3)/(1+x^2)#?

2 Answers
Jun 15, 2016

#x^2/2-1/2ln(x^2+1)+C.#

Explanation:

First note that the given integrand (function to be integrated) is an Improper Rational Function [degree of poly. in Numerator (Nr.) #=3>2=#degree of poly. in Deno.(Dr.)]. So, before integrating, we have to make it Proper. Usually, Long Division is performed for this, but we proceed as under:

#Nr.= x^3= x^3+x-x=x(x^2+1)-x.#
#:.# Integrand = Nr./Dr. = #{x(x^2+1)-x}/(x^2+1) ={x(x^2+1)}/(x^2+1)-x/(x^2+1)=x-x/(x^2+1)#

#:. intx^3/(x^2+1)dx=int[x-x/(x^2+1)]dx=intxdx-(1/2)int(2x)/(x^2+1)dx=x^2/2-1/2ln(x^2+1)+C.#

Notice that the second integral follows by using the formula ; #int(f'(x))/f(x)dx=lnf(x).#

Jun 15, 2016

#int x^3/(1+x^2) d x=1/2[x^2-ln(1+x^2)]+C#

Explanation:

#int x^3/(1+x^2) d x=?#

#(x^³)/(1+x^2)=x-x/(1+x^2)#

#"we can write the expression of "x^3/(1+x^2) " as "x-x/(1+x^2)" because both expressions are equal"#

#int x^3/(1+x^2) d x=int (x-x/(1+x^2))d x=int x d x-int x/(1+x^2) d x#

#int x^3/(1+x^2) d x=1/2 x^2-1/2 int (2x*d x)/(1+x^2)#

#1+x^2=u" ; "2x*d x=d u#

#int x^3/(1+x^2) d x=1/2 x^2-1/2 int (d u)/u#

#int x^3/(1+x^2) d x=1/2 x^2-1/2ln u+C#

#"plug "u=1+x^2;#

#int x^3/(1+x^2) d x=1/2 x^2-1/2ln(1+x^2)+C#

#int x^3/(1+x^2) d x=1/2[x^2-ln(1+x^2)]+C#