How do you find the derivative of #ln x / ln y = ln(x-y)#?

1 Answer
Jun 17, 2016

#(dy)/(dx)=(x(lny)^2-(x-y)lny)/(x(lny)^2-(x-y)lnx)xxy/x#

Explanation:

As #(lnx)/(lny)=ln(x-y)#, using chain rule and differentiating both sides

#(lnyxx1/x-lnx xx1/yxx(dy)/(dx))/(lny)^2=1/(x-y)xx(1-(dy)/(dx))#

(note that we have used quotient rule on LHS)

#(lny/x-lnx/yxx(dy)/(dx))=(lny)^2/(x-y)-(dy)/(dx)((lny)^2/(x-y))#

or #(dy)/(dx)((lny)^2/(x-y))-lnx/yxx(dy)/(dx)=(lny)^2/(x-y)-lny/x#

or #(dy)/(dx)((lny)^2/(x-y)-lnx/y)=(lny)^2/(x-y)-lny/x#

or #(dy)/(dx)=((lny)^2/(x-y)-lny/x)/((lny)^2/(x-y)-lnx/y)#

or #(dy)/(dx)=(x(lny)^2-(x-y)lny)/(x(lny)^2-(x-y)lnx)xxy/x#