How do you find the definite integral for: #((x^(6))dx# for the intervals #[b, 2b]#?
1 Answer
Explanation:
#int_b^(2b)x^6dx=[1/7x^7]_b^(2b)#
Note that this antiderivative was obtained using the rule
#=1/7[(2b)^7-b^7]=1/7(128b^7-b^7)=1/7(127b^7)#
#rArrint_b^(2b)x^6dx=127/7 b^7#