What is #int tan^3(x) sec^4(x/2) dx#?
1 Answer
Explanation:
The first step here should be to eliminate the half-angle--even though it will crate a double angle in the tangent function, double-angles are easier to work with.
Let
Substituting these in, we see that:
#inttan^3(x)sec^4(x/2)dx=2inttan^3(2u)sec^4(u)du#
Note the tangent double-angle formula:
#tan(2u)=(2tan(u))/(1-tan^2(u))#
Therefore:
#2inttan^3(2u)sec^4(u)du=2intsec^4(u)[(2tan(u))/(1-tan^2(u))]^3du#
Now, cube the fraction and take a
#=2intsec^2(u)((8tan^3(u)(1+tan^2(u)))/(1-tan^2(u))^3)du#
Now, let
#=16int(v^3(1+v^2))/(1-v^2)^3dv#
Now, let
#=-8int(-2v(v^2)(1+v^2))/(1-v^2)^3dv#
Here, from
#=-8int((1-w)(2-w))/w^3dw#
Expanding:
#=-8int(2-3w+w^2)/w^3dw#
Splitting and writing with negative exponents, except for on the last one (since it's the natural logarithm integral:
#=-16intw^-3dw+24intw^-2-8int1/wdw#
Integrating using
#=-16(w^-2/(-2))+24(w^-1/(-1))-8ln(absw)+C#
Using
#=8/(1-v^2)^2-24/(1-v^2)-8ln(abs(1-v^2))+C#
Using
#=8/(1-tan^2(u))^2-24/(1-tan^2(u))-8ln(abs(1-tan^2(u)))+C#
Using
#=8/(1-tan^2(x/2))^2-24/(1-tan^2(x/2))-8ln(abs(1-tan^2(x/2)))+C#