What is the integral of #cos^2(6x) dx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Jun 20, 2016 #:. intcos^2(6x)dx=(1/2)(x+(sin12x)/12)+C.# Explanation: Recall that #cos^2theta=(1+cos2theta)/2.# #:. cos^2(6x)=(1+cos12x)/2.# #:. intcos^2(6x)dx=int(1+cos12x)/2dx=(1/2){x+(sin12x)/12}+C.# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 27006 views around the world You can reuse this answer Creative Commons License