How do you find the derivative of #sqrt(tan x)#?

1 Answer
Jun 21, 2016

#(sec^2x)/(2sqrt(tanx)#

Explanation:

differentiate using the #color(blue)"chain rule"#

#d/dx[f(g(x))]=f'(g(x)).g'(x)........ (A)#
#"------------------------------------------"#
Express #sqrttanx=(tanx)^(1/2)#

#f(g(x))=(tanx)^(1/2)rArrf'(g(x))=1/2(tanx)^(-1/2)#

#g(x)=tanxrArrg'(x)=sec^2x#
#"------------------------------------------"#
Substitute these values into (A)

#rArrd/dx(sqrttanx)=1/2(tanx)^(-1/2).sec^2x=sec^2x/(2sqrttanx#