How do you use the limit definition to find the slope of the tangent line to the graph #y=x^3# at (-2,8)?

1 Answer
Jun 22, 2016

Slope: #color(green)(12)#
(see below for application of limit definition)

Explanation:

Replacing #y# with #f(x)#
the limit definition of the slope is
#color(white)("XXX")m_x =lim_(hrarr0)(f(x+h)-f(x))/h#

In this case
#color(white)("XXX")m_x=lim_(hrarr0)((x+h)^3-x^3)/h#

#color(white)("XXXX")=lim_(hrarr0)(x^3+3x^2h+3xh^2+h^3-x^3)/h#

#color(white)("XXXX")=lim_(hrarr0)(3x^2h+3xh^2+h^3)/h#

#color(white)("XXXX")=lim_(hrarr0)(3x^2+3xh+h^2)#

#color(white)("XXXX")=3x^2#

At #(-2,8)#
#color(white)("XXX")x=-2#
and
#color(white)("XXX")m_(-2)=3(-2)^2 = 3xx4=12#