How do you simplify #(4+2i)(-5+2i)#?

1 Answer
Jun 23, 2016

#(4+2i)(-5+2i) = -24 -2i#

Explanation:

We simplify the multiplication of complex numbers by doing the multiplication like a binomial - i.e. we distribute the multiplication over the summed terms:

#(4+2i)(-5+2i) = 4(-5) + 4(2i)+2i(-5)+2i(2i)#
#(4+2i)(-5+2i) = -20 +8i -10i+4i^2#

now we collect like terms and use #i^2 =-1#

#(4+2i)(-5+2i) = -20 -2i+4(-1)#
#(4+2i)(-5+2i) = -20 -2i-4#

Finally,

#(4+2i)(-5+2i) = -24 -2i#