How do you integrate #e^(4x) dx#?
1 Answer
Jun 24, 2016
Explanation:
We will use the integration rule for
#inte^udu=e^u+C#
So, for the given integral, let
#inte^(4x)dx=1/4inte^(4x)*4dx=1/4inte^udu=1/4e^u+C#
Since
#1/4e^u+C=1/4e^(4x)+C#
We can differentiate this answer to check that we get