How do you find the antiderivative of #e^(sinx)*cosx#?

1 Answer

Use a #u#-substitution to find #inte^sinx*cosxdx=e^sinx+C#.

Explanation:

Notice that the derivative of #sinx# is #cosx#, and since these appear in the same integral, this problem is solved with a #u#-substitution.

Let #u=sinx->(du)/(dx)=cosx->du=cosxdx#

#inte^sinx*cosxdx# becomes:
#inte^udu#

This integral evaluates to #e^u+C# (because the derivative of #e^u# is #e^u#). But #u=sinx#, so:
#inte^sinx*cosxdx=inte^udu=e^u+C=e^sinx+C#