Find the derivative of #cscx# from first principles?

1 Answer
Jun 26, 2016

#(dy)/(dx)=-cscxcotx#

Explanation:

As #y=cscx=1/sinx#, #y+deltay=1/sin(x+deltax)#

Hence #deltay=1/sin(x+deltax)-1/sinx#

= #(sinx-sin(x+deltax))/(sinxsin(x+deltax))#

= #-(sin(x+deltax)-sinx)/(sinxsin(x+deltax))#

= #-(2sin((x+deltax-x)/2)cos((x+deltax+x)/2))/(sinxsin(x+deltax))#

= #-(2sin((deltax)/2)cos(x+(deltax)/2))/(sinxsin(x+deltax))# and

#(deltay)/(deltax)=-(2sin((deltax)/2)cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))#

Hence #(dy)/(dx)=Lt_(deltax->0)(deltay)/(deltax)#

= #Lt_(deltax->0)-(2sin((deltax)/2)cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))#

= #Lt_(deltax->0)(-sin((deltax)/2)/((deltax)/2))xxLt_(deltax->0)[(cos(x+(deltax)/2))/(deltaxsinxsin(x+deltax))]#

= #-1xxcosx/(sin^2x)=-1/(sinx)xxcosx/sinx=-cscxcotx#