How do you integrate # [ln(lnx)]/[x] dx#?

2 Answers
Jun 27, 2016

lnx ln ln x- ln x

Explanation:

This can be done by u substitution. Let lnx =u, so that #1/x dx =du#

enter image source here

Jun 27, 2016

#int(ln(lnx))/xdx=lnxln(lnx)-lnx+c#

Explanation:

Let #z=lnx# then #dz=dx/x#

Hence #int(ln(lnx))/xdx=intlnzdz#

Now using integration by parts, if #u=lnz# and #v=z#

As #intudv=uv-intvdu#, we have

#intlnzdz=lnzxxz-intzdz/z=zlnz-z#

Hence #int(ln(lnx))/xdx=lnxln(lnx)-lnx+c#