How do you differentiate #-y=lnxy-xy#?

1 Answer
Jun 27, 2016

#y' = - (y - xy^2)/( xy + x - x^2y )#

Explanation:

this is a bit easier [administratively] if you use the Implicit Function Theorem...

which says that #color{red}{y' = - (f_x)/(f_y)}# for function #f(x,y) = const#

so from
#-y=lnxy-xy#

we get
# y + lnxy-xy \color{blue}{= 0}= f(x,y)#

and so....
#f_x = 1/(xy)*y - y #
#= 1/x - y#
and
#f_y = 1 + 1/(xy)*x - x #
#= 1 + 1/(y) - x #

so using the IFT....
#y' = - (f_x)/(f_y)#

#= - (1/x - y)/( 1 + 1/(y) - x )#

#= - (y - xy^2)/( xy + x - x^2y )#

there are some pretty simple ways to intuit the Implicit Function Theorem

one is to note that if #f(x,y) = c#

then the total differential #df = 0#

and #df = f_x dx + f_y dy = 0#

so #dy/dx = - (f_x)/(f_y)#