How do you simplify #14sqrt20 - 3sqrt125#?

2 Answers
Jul 2, 2016

#14sqrt20-3sqrt125=13sqrt5#

Explanation:

#14sqrt20-3sqrt125#

= #14sqrt(2xx2xx5)-3sqrt(5xx5xx5)#

= #14sqrt(ul(2xx2)xx5)-3sqrt(ul(5xx5)xx5)#

= #14xx2xxsqrt5-3xx5xxsqrt5#

= #28sqrt5-15sqrt5#

= #(28-15)sqrt5#

= #13sqrt5#

Jul 2, 2016

#14sqrt(20)-3sqrt(125) = 13sqrt(5)#

Explanation:

Note that if #a, b >= 0# then:

#sqrt(ab) = sqrt(a)sqrt(b)#

In particular:

#sqrt(a^2b) = sqrt(a^2)sqrt(b) = asqrt(b)#

So we can move square factors outside the square root like this:

#14sqrt(20)-3sqrt(125)#

#=14sqrt(2^2*5)-3sqrt(5^2*5)#

#=14sqrt(2^2)sqrt(5)-3sqrt(5^2)sqrt(5)#

#=(14*2*sqrt(5))-(3*5*sqrt(5))#

#=28sqrt(5)-15sqrt(5)#

#=(28-15)sqrt(5)#

#=13sqrt(5)#