Solve #cos(-60^o)-tan135^o-:tan315^o +cos660^o#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Shwetank Mauria Jul 3, 2016 #cos(-60^o)-tan135^o-:tan315^o +cos660^o=0# Explanation: To solve #cos(-60^o)-tan135^o-:tan315^o +cos660^o# we make use of #cos60^o=1/2# and #tan45^o=1# and also the identities #cos(-A)=cosA# and #tan(360^o-A)=tan(180^o-A)=-tanA#. Hence #cos(-60^o)-tan135^o-:tan315^o +cos660^o# = #cos60^o-tan(180^o-45^o)-:tan(360^o-45^o) +cos(720^o-60^o)# = #cos60^o-(-tan45^o)-:(-tan45^o) +cos(-60^o)# = #1/2-(-1)-:(-1) +cos60^o# = #1/2-1+1/2=0# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 1740 views around the world You can reuse this answer Creative Commons License